Generalized Poincaré Conjecture
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
area of
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, the generalized Poincaré conjecture is a statement that a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
which is a
homotopy sphere In algebraic topology, a branch of mathematics, a ''homotopy sphere'' is an ''n''-manifold that is homotopy equivalent to the ''n''-sphere. It thus has the same homotopy groups and the same homology groups as the ''n''-sphere, and so every homotopy ...
a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
. More precisely, one fixes a
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
of manifolds:
topological In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing h ...
(Top), piecewise linear (PL), or
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
(Diff). Then the statement is :Every homotopy sphere (a closed ''n''-manifold which is
homotopy equivalent In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
to the ''n''-sphere) in the chosen category (i.e. topological manifolds, PL manifolds, or smooth manifolds) is isomorphic in the chosen category (i.e. homeomorphic, PL-isomorphic, or diffeomorphic) to the standard ''n''-sphere. The name derives from the
Poincaré conjecture In the mathematics, mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the Characterization (mathematics), characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dim ...
, which was made for (topological or PL) manifolds of dimension 3, where being a homotopy sphere is equivalent to being
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the spac ...
and
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
. The generalized Poincaré conjecture is known to be true or false in a number of instances, due to the work of many distinguished topologists, including the
Fields medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award ho ...
awardees
John Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Uni ...
,
Steve Smale Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics facul ...
,
Michael Freedman Michael Hartley Freedman (born April 21, 1951) is an American mathematician, at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional gen ...
, and
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
.


Status

Here is a summary of the status of the generalized Poincaré conjecture in various settings. * Top: true in all dimensions. * PL: true in dimensions other than 4; unknown in dimension 4, where it is equivalent to Diff. * Diff: false generally, the first known counterexample is in dimension 7. True in some dimensions including 1, 2, 3, 5, 6, 12, 56 and 61. The case of dimension 4 is equivalent to PL and is unsettled . The previous list includes all odd dimensions and all even dimensions between 6 and 62 for which the conjecture is true; it may be true for some additional even dimensions \ge 64 though it is conjectured that this is not the case. Thus the veracity of the Poincaré conjectures changes according to which category it is formulated in. More generally the notion of isomorphism differs between the categories Top, PL, and Diff. It is the same in dimension 3 and below. In dimension 4, PL and Diff agree, but Top differs. In dimensions above 6 they all differ. In dimensions 5 and 6 every PL manifold admits an infinitely differentiable structure that is so-called ''Whitehead compatible''.See


History

The cases ''n'' = 1 and 2 have long been known by the classification of manifolds in those dimensions. For a PL or smooth homotopy n-sphere, in 1960
Stephen Smale Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics facult ...
proved for n\ge 7 that it was homeomorphic to the ''n''-sphere and subsequently extended his proof to n\ge 5; he received a
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award ho ...
for his work in 1966. Shortly after Smale's announcement of a proof,
John Stallings John Robert Stallings Jr. (July 22, 1935 – November 24, 2008) was a mathematician known for his seminal contributions to geometric group theory and 3-manifold topology. Stallings was a Professor Emeritus in the Department of Mathematics at the ...
gave a different proof for dimensions at least 7 that a PL homotopy ''n''-sphere was homeomorphic to the ''n''-sphere, using the notion of "engulfing". E. C. Zeeman modified Stalling's construction to work in dimensions 5 and 6. In 1962, Smale proved that a PL homotopy ''n''-sphere is PL-isomorphic to the standard PL ''n''-sphere for ''n'' at least 5. In 1966, M. H. A. Newman extended PL engulfing to the topological situation and proved that for n \ge 5 a topological homotopy ''n''-sphere is homeomorphic to the ''n''-sphere.
Michael Freedman Michael Hartley Freedman (born April 21, 1951) is an American mathematician, at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional gen ...
solved the topological case n = 4 in 1982 and received a Fields Medal in 1986. The initial proof consisted of a 50-page outline, with many details missing. Freedman gave a series of lectures at the time, convincing experts that the proof was correct. A project to produce a written version of the proof with background and all details filled in began in 2013, with Freedman's support. The project's output, edited by Stefan Behrens, Boldizsar Kalmar, Min Hoon Kim, Mark Powell, and Arunima Ray, with contributions from 20 mathematicians, was published in August 2021 in the form of a 496 page book, ''The Disc Embedding Theorem''.
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
solved the case n = 3 (where the topological, PL, and differentiable cases all coincide) in 2003 in a sequence of three papers. He was offered a Fields Medal in August 2006 and the Millennium Prize from the
Clay Mathematics Institute The Clay Mathematics Institute (CMI) is a private, non-profit foundation (nonprofit), foundation dedicated to increasing and disseminating mathematics, mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address i ...
in March 2010, but declined both.


Exotic spheres

The generalized Poincaré conjecture is true topologically, but false smoothly in some dimensions. This results in constructions of manifolds that are homeomorphic, but not diffeomorphic, to the standard sphere, which are known as the
exotic sphere In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of al ...
s: you can interpret these as non-standard
smooth structure In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M is ...
s on the standard (topological) sphere. Thus the
homotopy sphere In algebraic topology, a branch of mathematics, a ''homotopy sphere'' is an ''n''-manifold that is homotopy equivalent to the ''n''-sphere. It thus has the same homotopy groups and the same homology groups as the ''n''-sphere, and so every homotopy ...
s that
John Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Uni ...
produced are homeomorphic (Top-isomorphic, and indeed piecewise linear homeomorphic) to the standard sphere S^n, but are not diffeomorphic (Diff-isomorphic) to it, and thus are
exotic sphere In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of al ...
s: they can be interpreted as non-standard differentiable structures on the standard sphere.
Michel Kervaire Michel André Kervaire (26 April 1927 – 19 November 2007) was a French mathematician who made significant contributions to topology and algebra. He introduced the Kervaire semi-characteristic. He was the first to show the existence of topologi ...
and Milnor showed that the
oriented In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
7-sphere has 28 different smooth structures (or 15 ignoring orientations), and in higher dimensions there are usually many different smooth structures on a sphere. It is suspected that certain differentiable structures on the 4-sphere, called
Gluck twist In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of ...
s, are not isomorphic to the standard one, but at the moment there are no known invariants capable of distinguishing different smooth structures on a 4-sphere.


PL

For
piecewise linear manifold In mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear ...
s, the Poincaré conjecture is true except possibly in dimension 4, where the answer is unknown, and equivalent to the smooth case. In other words, every compact PL manifold of dimension not equal to 4 that is homotopy equivalent to a sphere is PL isomorphic to a sphere.


References

{{DEFAULTSORT:Generalized Poincare conjecture Geometric topology Homotopy theory Conjectures